Steel Fiber Reinforced Concrete (SFRC) for TBM Tunnel Segmental Lining – Case Histories in the Middle East

Ing. Guido Castrogiovanni, COWI
COWI BTM participates in some of the world’s landmark projects such as the largest offshore wind farms, deepest immersed tunnels, challenging metro-projects, longest bridges and most complex marine structures.
COWI SCFR Experiences

› Red Line North Underground, Doha QA
› Abu Hamour Sewer, Doha QA
› STEP Project, Abu Dhabi UAE
Why the SFRC should be used (or not) for segmental lining?

This presentation refers to tunnels in which 80% - 90% of the precast segments rings are reinforced with Steel Fibers and the remaining rings with traditional rebar cages.

› The SFRC is loved by Contractors.
› Corrosion and life service: The SFRC solved easily most of the corrosion issues within the design of precast segmental linings.
› The fibers reduces the local damages (corners), and severity of cracks in given conditions.
Why the SFRC should be used (or not) for segmental lining?

Fire protection: The expected spalling will be reduced
Stray current: is definitely solved
Sustainability: the steel reinforcement volume is significantly reduced
Why the SFRC should be used (or not) for segmental lining?

- The SFRC is not loved by some Agencies/Client. The technology is not fully known by the market. Difficult approval process.
- The design phase is critical, additional risk.
- The SFRC requires additional tests to define the SFRC strength.
- The SFRC requires the contractor capability for the concrete mix and the ring assembling.
- Some kind of cracks are critical with the fibers.
COWI designed 3 different SSFRC lining tunnels with diameters variable from 4 to 6m (check) in different type of soft rock to soils: STEP project in Abu Dhabi (UAE), Abu Hamour and Doha Metro projects in Doha (Qatar)

<table>
<thead>
<tr>
<th>Structural parts</th>
<th>Durability related design characteristics</th>
<th>Min/nom cover mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Typical tunnel segments</td>
<td>HDPE (internal) Epoxy coating (external)</td>
<td>N.A.</td>
</tr>
<tr>
<td>Special tunnel segments close to the adits</td>
<td>Traditional steel + steel fibre HDPE (internal) Epoxy coating (external)</td>
<td>60/65 (internal & external)</td>
</tr>
<tr>
<td>Adits & Shafts</td>
<td>Traditional steel Epoxy coating (internal)</td>
<td>75/85 (internal) 60/70 (external)</td>
</tr>
</tbody>
</table>
SSFRC Lining in Middle East Tunnels

The fibers: The solution for tunnel segments durability
Standard solution for high concentration of chloride and sulphate.
Damaged Segments

RC segments:
fragile material (RC) +
high concrete covers (Durability) =

Widespread failures of edges/corners/grooves
Several CMS of concrete are unprotected.
Damaged Segments

• **Assembling issues:**

 Greater ductility of the material

 +

 Greater impact resistance

 =

 Improved redistribution of the stresses in case of unforeseen loads

 less thick cracks
Damaged Segments

- **HIGH UNFORESEEN OVERSTRESS**
 (SEGMENTS MISALIGNMENTS IN THE ORDER OF CMS)

RC segments offer a greater margin of safety

Less margin of error during the installation of the segments!

There is no reinforcement limiting the diffusion of the cracks
SFRC is loved by the contractor

- No need of a dedicated plant for steel cages production

- Easy addition of the fibers to the concrete aggregates by means of a feeder

- Very simple equipment and no need of as high-qualified workmanship as opposed to steel cages production
Fire Protection – PPF Fibers

Steel fibers contribute to increase the fire protection against spalling, however,

the greater contribution is offered by PPF (average dosage 1-1.5 kg/mc)

PPF affects greatly the workability of the concrete mix

1 kg/m³ → 1 slump class down
Stray Current

No Steel Bars

No corrosion issues (environment and stray current)

No current dispersion system in the segments

No need to monitor the corrosion
Sustainability: Significantly Less Steel Reinforcement

• SAVING ON THE MATERIAL
 ($\approx - 60\% \text{ Steel }$)

RC segments: 70-120 kg/mc
SFRC segments: 25-50 kg/mc

Example:

1 km of metro tunnel with ordinary steel reinforcement \Rightarrow 500-800 tons of steel

Economical and eco-friendly choice
Demanding Design and Approval Process

Some Clients/ Agencies may be reluctant to accept the full SFRC solution.

- Not fully known general standards.
- A few projects worldwide.
- Design focused in the segment details (borders, corners, holes) to minimize the tensile stress.
- Design focused in the detailed assessment of pushing rams phases and tensile stress.
SCFR – Lining Design

REQUIREMENTS
- CLIENT
- CONTRACTOR

STUDY PHASE
- THEORETICAL STUDY
- SFRC SPECIFICATION
- SPERIMENTAL STUDY

PRODUCTION PHASE
- TESTING
- ORDINARY PRODUCTION

OPTIMIZATIONS

NEED TO HAVE SOMEONE WITH A CLEAR PICTURE OF THE REPERCUSSIONS OF ANY CHANGE IN BOTH STUDY AND PRODUCTION PHASE.
SCFR - Design

- PRODUCTION ISSUES RELATED TO THE USE OF SF AND PPF
 WORKABILITY, AD-HOC MIX DESIGN, USE OF ADMIXTURES

A FINE TUNING OF THE CONCRETE MIX DESIGN COULD BE REQUIRED IN FUNCTION OF THE EQUIPMENT IN USE

- Cement
- Water
- Aggregates
- Steel Fibers
- PP Fibers
- Admixtures

CONCRETE MIX DESIGN

Moulds
Vibration system affects greatly the final results and mix design could be required to be optimized

EQUIPMENT

FINE TUNING
SFRC – Design of the details
Conclusions

TREND :
- The use of SCFR is the future of most of the TBM tunnels lining.

ISSUES :
- The operators may be skeptical about SCFR. A few projects worldwide.
- The technology requires very high level of contractor and designer.
- The project present major risks.

SOLUTION :
- Effective collaboration between involved parts (Client/contractor/designer)
- High skilled designer and contractor